Agilent MXG and MXG ATE RF Signal Generators Optimized for performance and speed

New

Improved

> +23 dBm output power simplifies test configuration to drive high power devices

-71 dBc ACLR up to +5 dBm performance enables more accurate design characterization ≤ 1.2 ms switching speeds in SCPI mode enable increases in throughput

Innovative design for reliability and easy self-maintenance maximize uptime

Agilent Technologies

Agilent MXG RF Signal Generators

MXG and MXG ATE analog and vector signal generators have been crafted to meet the challenges facing manufacturers and designers – measurement certainty, throughput and downtime.

Improving measurement accuracy

For out-of-channel measurements, the MXG vector offers the industry's best combination of high power & dynamic range, providing better measurement certainty and ultimately simplifying design verification, from development through production.

Increasing manufacturing throughput

With the fastest SCPI-mode and *simultaneous* frequency, amplitude, and waveform switching speeds in its class, Agilent MXG reduces test times, letting you increase throughput using newer resources and capital.

Decreasing downtime

Every element of Agilent MXG is designed to maximize up-time, from a reliable architecture down to cost- and timeeffective tools for easy self-maintenance; making it an ideal solution for today's cost-sensitive communications industry.

Scalable solutions for design or production

The MXG family of signal generators offers scalable performance for general purpose, cellular communications and wireless networking. Sandard options include frequency range (1, 3, 6 GHz), AM/FM/ ϕ M, pulse modulation, and an internal baseband generator with sample rates up to 125 MSa/s, while MXG ATE signal generators and N1562A MXG ATE are further optimized for automated test environments with all rear panel connectors and removal of front panel.

Performance data¹

Switching speed	SCPI mode	Digital sweep
Frequency	≤ 1.15 ms	≤ 900 µs
Amplitude	≤ 750 µs	≤ 500 µs
Waveform	≤ 1.2 ms	≤ 900 µs

www.agilent.com

Visit www.agilent.com/find/lxi, www.agilent.com/find/open, and www.agilent.com/find/emailupdates for more information.

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Measured maximum output power with Option 1EA²

Maximum power	Standard	Option 1EA
>50 MHz to 3 GHz	+13 dBm	+23 dBm
>3 GHz to 5.0 GHz	+13 dBm	+17 dBm
> 5.0 GHz	+11 dBm	+16 dBm

Measured W-CDMA ACLR with Option UNV^{2,3}

ACLR (3GPP W-CDMA)³

1-carrier	-71 dBc spec., -73 dBc ty	p.
4-carrier	-64 dBc spec., -66 dBc ty	ρ.

Single sideband phase noise (typical at 20 kHz offset)

1 GHz	≤ –121 dBc/Hz
3 GHz	≤ –110 dBc/Hz
6 GHz	$\leq -104 \text{ dBc/Hz}$

1. Data subject to change. See data sheet for details.

- 2. Measured during design phase at room temperature. Data is not warranted.
- 3. Test Model 1, 64 DPCH, +5 dBm

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2006, 2008 Printed in USA, July 17, 2008 5989-5453EN

Agilent Technologies