Agilent Measurement Wizard Assistant (MWA) Software for the ENA

Application Note

Table of Contents

Introduction	2
Product Overview	3
Front-End Application - Create the Spec Sheet	4
Step 1. Multiport Test Set setup	5
Step 2. DUT setup	6
Step 3. Mode setup	7
Step 4. GPIB setup	8
Step 5. Spec Sheet setup	9
Step 6. Output setup	10
Step 7. System setup	11
Back-End Application	12
Step 1. Import a spec sheet to the ENA for measurement setup	12
Step 2. Perform calibration with the calibration wizard	14
Step 3. Confirm connection between test system and DUT	16
Step 4. Start measurements	17
Step 5. Analyze of measurement results	18
Measurement Example	20
Summary	23
Required Hardware and Software for the ENA Multiport Solution	ı23
References	23
Related Literature	23

Introduction

In today's fast-paced testing environments, with increasing functionality supported in devices under test (DUTs), network analysis is becoming more and more complicated. Many components have multiple RF input and/or output ports making multiport measurement a requirement for total device characterization. Complex multiport devices also have more parameters that need to be measured requiring engineers to spend a lot of time setting up the measurement system, an expenditure that leads to a loss of efficiency in product development and manufacturing test. To accelerate time to market, device manufacturers need easy-touse software that guides them through whole measurement procedure and minimizes the time spent on setup and measurements. Agilent Measurement Wizard Assistant (MWA) software for the Agilent ENA network analyzer simplifies measurement procedures. MWA software supports multiport measurement on the 4-port ENA using the E5092A configurable multiport test set(s).

This application note explains how using MWA software on the ENA simplifies measurements and reduces the setup time of complicated measurements. It provides you with a step-by-step guide to the MWA and useful measurement tips for using the software.

Product Overview

Figure 1 shows the overall concept of MWA software¹. MWA consists of two main applications - the *Front-End* application handles complex parameter settings input with a PC and the *Back-End* application loads the setup file into the ENA and automatically sets the measurement parameters.

The Front-End application, running on the Microsoft[®] Excel, enables you to easily set up complex measurements. After you enter the parameters, the software automatically generates a setup file for the ENA that includes all parameters for network analysis such as power level, frequency range, IFBW or number of points. This application software is provided as a VBA macro on Excel and can be operated on any PC with Excel installed. Measurement parameters can now be entered using a PC, which reduces operating time and increases productivity.

The Back-End application runs on the ENA as a VBA macro. This macro provides the functions of spec sheet loading, calibration wizard, and limit test monitoring. The Back-End application imports the setup file (.mwa) generated by the Front-End application and uses it to automatically set up measurements on the ENA. The *Calibration Wizard*² takes you through the calibration steps necessary for all measurements. This wizard minimizes the number of required connections between the device under test (DUT) and calibration standards during the calibration procedure, eliminates the possibility of connecting to wrong ports, and saves operating time during calibration. Measurement procedures are fully controlled by the Back-End application. The software provides you with a wide variety of functions that allow you to customize your measurements for your applications. The Back-End application also provides detailed measurement results. You can view reports and get a detailed snapshot of your DUT's characteristics using a simple operation.

The following sections provide more details on the MWA's advanced functionality.

Front-End Application

Software based on Microsoft Excel.
Operates on any PC with Microsoft Excel installed.

Features

- · Easy and fast measurement setup of the ENA.
- Generates one setup file (.mwa) that includes all measurement parameters.
- Step-by-step setup wizard with Excel-based user interface.

Figure 1. Overview of the Measurement Wizard Assistant software

Back-End Application

- Software based on a Microsoft VBA Macro working in the ENA.
- Option E5071C-790 for the ENA is required for full operation capability.

Features

- Recalls the .mwa setup file and sets all the parameters on the ENA automatically.
- · Calibration wizard minimizes operation time.
- Automatic test procedures with go/no go limit test.

- ENA Option E5071C-790 ENA is required to enable full MWA software capability. Upgrade product (E5005A) is available as well. An evaluation version of the MWA software can be downloaded at: www.aoilent.com/find/mwa
- When using an ECal module with calibration wizard of the MWA, the 4-port ECal module (i.e. N4431B or N4433A) is required.

Front-End Application -Create the Spec Sheet

Before performing a measurement with the ENA, you must create a setup file. MWA software uses Excel spreadsheets to create this file via the Front-End application. When the Front-End application is opened, you will see that there are seven spreadsheets:

- 1. Multiport Test Set
- 2. **DUT**
- 3. Mode
- 4. GPIB
- 5. Spec Sheet
- 6. Output
- 7. System

This application note will go through these seven spreadsheets in succession starting with the *Multiport Test Set* sheet.

Step 1. Multiport Test Set setup

The *Multiport Test Set* sheet lets you select the appropriate instrument and measurement configuration (Figure 2).

- Select configuration of the multiport test set¹ to be used for multiport network analysis (Figure 2a). Test set configurations can be customized for your application.
- 2) You can cascade two test sets for characterization of devices with a large number of ports (Figure 2b). In this case, port 1 to port 4 of the second test set are connected to the ports on the first test set by inputting each port number in the Link cell of the spreadsheet.
- 3) The available measurement paths are automatically displayed in the measurement connectivity matrix (Figure 2c). This provides the combination of ports on the ENA or the test set that is available for measurements. Note that measurements between ports cannot be performed if they share the same source or receiver port on the ENA. MWA software checks the internal architecture of the test set and automatically eliminates any configuration setup with this limitation.

Figure 2. Multiport Test Set sheet (Front-End application)

^{1.} The Z5623A K64 and K66 multiport test sets only work with PNA-L Option 245.

Step 2. DUT setup

- The *DUT* sheet provides information on the device under test (DUT), connection to the ENA or multiport test set(s) ports, and testing parameters (Figure 3). You can assign names to the ports of the DUT (Figure 3a). When testing a component with differential ports, select **Differential** instead of **Single**. Use **Sub Label** to name each single-ended port of a differential pair (Figure 3b).
- Select connection to the corresponding ports on the ENA or test set using the Test Set Port cells (Figure 3c).
- 3) All the parameters related to the *Fixture Simulator* functions of the ENA need be entered in this spreadsheet. These parameters are used to characterize the device ports or fixtures used in testing. Selecting the correct port impedance or port matching circuit of each port to increases the accuracy of DUT and fixture characterization. (Figure 3d).

Figure 3. DUT sheet (Front-End application)

Step 3. Mode setup

Components with integrated active devices require DC control line voltage to select the active path of the device for testing. The *Mode* sheet defines the operation mode of the DUT (Figure 4). The E5092A multiport test set has 4 independent DC sources that can supply DC control line voltage to a device through a 15-pin or 25-pin D-sub connector on the front panel. Select L (low) or H (high) voltage for each control bit in the spreadsheet to define the operating mode of the DUT. ENA MWA software enables synchronized measurement of up to 40 independent operation modes.

- Assign a preferred mode name (Figure 4a). Test results for each mode are generated by the Back-End application after the measurements are performed. Turn the mode **ON** or **OFF** (Figure 4b). When a mode is turned off in this spreadsheet, you cannot set parameters in the Spec Sheet and measurements are not performed.
- 2) Set the **Control Line Voltage** for each control line. You can set up to 20 bits with the 4-independent DC sources (Group A to D) of the E5092A (Figure 4c).
- 3) Set the DC voltage for each **Group** (Figure 4d). DC control voltage is applied to the DUT from the internal DC sources of the E5092A.

		Mode Label			Con	trol Li Group	ne Vol A [TS	tage 1]			Con	itrol Li Group	ne Vol B [TS	tage 1]	Con	trol Li	ne Vol C [TS	tage 1]	Con	trol Lii	ne Vol D [TS	tage 1]	DC Sou	rce Output [V]	Voltage [T	[\$1]
			Vc1	Vc2	Vc3	Vc4	Vc5	Vc6	Vc7	Vc8	Vc1	Vc2	Vc3	Vc4	Vc1	Vc2	Vc3	Vc4	Vc1	Vc2	Vc3	Vc4	A	В	C	D
Mode 1	ON	DUT1	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	3.30	1.00	1.00	1.00
Mode 2	ON	DUT2	L	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	3.30	1.00	1.00	1.00
Mode 3	ON	DUT3	L.	L	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	3.30	1.00	1.00	1.00
Mode 4	ON	DUT4	L	L	L	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	3.30	1.00	1.00	1.00
Mode 5	ON	DUT5	L:	L	L	L	Η	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	3.30	1.00	1.00	1.00
Mode 6	PF.	6	L	L	E		L	L	12	L	L	L	L	L	L	L	Es	L	L	L	E	L	100	1.00	1.00	1.00
Mode 7	OF	ON 7	L	L	L		L	L		L	L.	L	L		L		L	L	L.			L	100	1.00	1.00	1.00
Mode 8	OFF	Iviode 8	L	L	L		1	1	1	1				L	Ĺ		L	L	L			1	1.0	1.00	1.00	1.00
Mode 9	OFF	Mode 9	L	L	E	10	1 Se	t co	ont	rol ł	nite			L	L		L	L	L	L	E	(d)	Specify		ltago	1.00
Mode 10	OFF	Mode 10	L	L	L	(0	, 00		one		5110				L		L	L	L		L	(u)	Specify		ntaye	1.00
				L	E		E			L	L	L	L		L		L	L	L		E	L	1.00	1.00	1.00	1.00
(b) T	urn	mode on/off		L	L	L	L	L		L	L	L	L	L	L			L	L			L	1.00	1.00	1.00	1.00
()				L	L	L	L		L	L	L	L	L	L	L		L	L	L	L		L	1.00	1.00	1.00	1.00
Mode 14	OFF	Mode 14	L	L	L	L	L			L	L	L	L		L			L	L		L	L	1.00	1.00	1.00	1.00
Mode 15	OFF	Mode 15	L	L	L	L	L	L		L.	L		L	L	L	L	L	L	L.		L	L	1.00	1.00	1.00	1.00
Mode 16	OFF	Mode 16	L	L	L	L	L	L		L	L	L	L	L	L		L	L	L		L	L	1.00	1.00	1.00	1.00
Mode 17	OFF	Mode 17	L	L	Ľ	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L		L	1.00	1.00	1.00	1.00
Mode 18	OFF	Mode 18	L	L	L	L	L	L	L	L	L	L	L		L	L	L	L	L		L	L	1.00	1.00	1.00	1.00
Mode 19	OFF	Mode 19	L	L	L	L	E	L	L	L	L	L	L	L	Ľ	L	L	L	L	L	Ľ	L	1.00	1.00	1.00	1.00
Mode 20	OFF	Mode 20	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	1.00	1.00	1.00	1.00
Mode 21	OFF	Mode 21	L	L	L	L	L	L	L	L	L	L	L	L	L		L	L	L	L	L	L	1.00	1.00	1.00	1.00
Mode 22	OFF	Mode 22	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	1.00	1.00	1.00	1.00
Mode 23	OFF	Mode 23	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	1.00	1.00	1.00	1.00
Mode 24	OFF	Mode 24	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	I	1	1.00	1.00	1.00	1.00

(a) Assign mode name

Figure 4. Mode sheet (Front-End application)

Step 4. GPIB setup

The *GPIB* sheet is used to set GPIB commands for controlling other instruments. When the USB/GPIB interface (Agilent 82357B) is connected to the ENA you can use the ENA as a system controller to control external peripherals. This spreadsheet lets you set SCPI commands and specific measurement timing with the ENA. You can also set limit test values using the GPIB **Limit** cell. The ENA sends a query command to an instrument, the returned value is handled by the limit test in the ENA's Back-End application.

Figure 5 shows an example of GPIB command capability. This is a setup example of a DC voltage/current measurement using the Agilent 34410A digital multimeter connected to the ENA via the GPIB interface. The query command is given to the multimeter and the returned values are processed by the limit test in the Back-End application.

- 1) Set the GPIB address of the digital multimeter (Figure 5a).
- 2) Input the GPIB command for each mode (Figure 5b). GPIB commands registered in "INIT" mode are sent to peripherals when a spec sheet (.mwa) is recalled by the Back-End application. In this example, a "*RST" command is sent to the multimeter in advance of measurements.
- 3) Select the type of commands to be performed (Figure 5c). The returned value of a query command is used in the limit test by the Back-End application when Limit is selected. If Pre or Post is selected, the GPIB commands are executed before or after the measurement of the mode.
- 4) Define limit values used in limit test by the Back-End application (Figure 5d). SCPI commands can be sent to the ENA as well as peripherals, by assigning a GPIB address of "-1".

			(b) Input GPIB com	mand (c) Sele	ect type o	f commar	nd
(a) Set G	PIB addre	SS				1		
		2	GPIB Command	21		0	PIB Limit	
Mode	Address		Command	Wait [ms]	Туре	Min	Max	Rank
INIT	23	*RST		0				
DUT1	23	INIT		0	Pre	/		1
	23	*TRG		0	Pre			1
	23	FETCH?		0	Limit		1000	1
DUT2	0			0	Pre		1	1
DUT3	0			0	Pre			1
DUT4	0			0	Pre	(d) Defin	o limit val	عميا
DUT5	0			0	Pre			lucs

Figure 5. GPIB sheet (Front-End application)

Step 5. Spec Sheet setup

All the measurement parameters on the ENA and specified values for the limit test should be input into this spreadsheet. A detailed explanation for each parameter is given below.

- Specify measurement paths by selecting input and output ports of the DUT (Figure 6a). The port names of the DUT were previously assigned in the DUT sheet. You can add more measurement paths to the mode of interest by double-clicking in the **Mode** cell.
- Select the format type of measurement parameters (Figure 6b). You can select: Transmission: IL (insertion loss), Ripple, ATT (attenuation), and Isolation Reflection: RL (return loss) and VSWR (voltage standing wave ratio) Transmission/reflection: Phase, Group Delay, Lin Mag (linear magnitude), Real, and Imag (imaginary)

Balanced (for differential): **BalAmp** (amplitude difference between balanced ports) and **BalPhase** (phase difference between balanced ports)

- 3) Set stimulus parameters such as frequency range, number of points, power level or IFBW on the ENA¹ (Figure 6c). Use the ENA frequency-offset mode when you need different frequency ranges for the source and receiver ports of the ENA. Enter the frequency range of the receiver in the **Rcvr Freq** cell.²
- 4) Enter the minimum and maximum threshold levels for limit test (Figure 6d). The Back-End application uses these limit values (DUT specifications) to perform the limit test returning measurement results for each path. If limit test measurements aren't required, these cells can be left blank. Blank cells are automatically interpreted as either –999 (MIN) or 999 (MAX).

(a) Set mea	asurement p	ath	ns (b) Se	eleo I	ct form	at type		(c) Se	et stim	iulus p	arameters		(d) Define	limit v	alues
		Path				Free	uency [MH	iz]	Rcvr Fr	eq [MHz]	SI	weep Setting	S	Spe	C
Mode	From		То		Туре	Start	Stop	Pts	Start	Stop	Power [dBm]	IFBW [Hz]	Sweep Mode	Min	Max
DUT1	DUT1_In	->	DUT1_In	RL		50	18000	51			0.00	10,000	Std. Stepped	20	
	DUT1_In	->	DUT1_Out1	IL		50	18000	51			0.00	10,000	Std. Stepped		3
	DUT1_In	->	DUT1_Out2	IL		50	18000	51			0.00	10,000	Std. Stepped		5
	DUT1_Out1	->	DUT1_Out1	RL		50	18000	51			0.00	10,000	Std. Stepped	15	
	DUT1_Out1	->	DUT1_Out2	IL		50	18000	51			0.00	10,000	Std. Stepped		5
	DUT1_Out2	->	DUT1_Out2	RL		50	18000	51			0.00	10,000	Std. Stepped	15	
DUT2	DUT2_In	->	DUT2_In	RL		50	18000	51			0.00	10,000	Std. Stepped	20	
	DUT2_In	->	DUT2_Out1	IL		50	18000	51			0.00	10,000	Std. Stepped		3
	DUT2_In	->	DUT2_Out2	IL		50	18000	51			0.00	10,000	Std. Stepped		5
	DUT2_Out1	->	DUT2_Out1	RL		50	18000	51			0.00	10,000	Std. Stepped	15	
	DUT2_Out1	->	DUT2_Out2	IL		50	18000	51			0.00	10,000	Std. Stepped		5
	DUT2_Out2	->	DUT2_Out2	RL		50	18000	51			0.00	10,000	Std. Stepped	15	
DUT3	DUT3_In	->	DUT3_In	RL		50	18000	51			0.00	100,000	Std. Stepped		
DUT4	DUT4_In	->	DUT4_In	RL		50	18000	51			0.00	100,000	Std. Stepped		8
DUT5	DUT5_In	->	DUT5_In	RL		50	18000	51			0.00	100,000	Std. Stepped		

Figure 6. Spec Sheet (Front-End application)

If the value is out of the ENA's setting range, the Back-End application automatically sets it to the closet allowable value.

^{2.} ENA Option E5071C-008 or upgrade product E5003A are required for this operation.

Step 6. Output setup

The *Output* sheet generates and saves a spec sheet (.mwa) that contains all the measurement parameters for the ENA. All the setup parameters input in the Front-End application are automatically assigned to the required channels of the ENA. This algorithm reduces errors and eliminates the need for independent allocation of the channels and traces on the ENA. It also minimizes the number of required traces by adopting a series of segment sweeps. This reduces the total throughput of testing and is especially beneficial in high-volume manufacturing environments. The number of allocated channels, traces and segments are displayed in this spreadsheet (Figure 7c). Note that the required maximum number of channels and traces must be selected in the ENA firmware before launching the Back-End application of the MWA.

- 1) Enter the maximum number of channels, traces and points on the ENA (Figure 7a).
- 2) Select **Save Spec Sheet** (Figure 7b) and a spec (.mwa) is generated and saved in a directory of the ENA.

DUT2	Tag M01P01_RL M01P02_IL M01P03_IL M01P04_RL M01P05_IL M01P06_RL M02P01_RL M02P02_IL M02P02_IL	999 Channel 1 1 1 1 1 1 1 2 2	9 Trace 1 2 3 4 5	401 Segment 1 1 1	Parameter S11 S21					
Mode DUT1 DUT2	Tag M01P01_RL M01P02_IL M01P03_IL M01P04_RL M01P06_RL M01P06_RL M02P01_RL M02P02_IL	Channel 1 1 1 1 1 1 1 2 2	Trace 1 2 3 4 5	Segment 1 1 1	Parameter S11 S21					
DUT1	M01P01_RL M01P02_IL M01P03_IL M01P04_RL M01P05_IL M01P05_RL M02P01_RL M02P01_RL M02P02_IL	1 1 1 1 1 1 2	1 2 3 4 5	1	S11 S21					
DUT2	M01P02_IL M01P03_IL M01P04_RL M01P05_IL M01P06_RL M02P01_RL M02P02_IL M02P02_IL	1 1 1 1 1 2	2 3 4 5	1	S21					
DUT2	M01P03_IL M01P04_RL M01P05_IL M01P06_RL M02P01_RL M02P02_IL M02P02_IL	1 1 1 1	3 4 5	1						
DUT2	M01P04_RL M01P05_IL M01P06_RL M02P01_RL M02P02_IL	1 1 1 2	4		SDS31					
DUT2	M01P05_IL M01P06_RL M02P01_RL M02P02_IL	1	5	1	S22					
DUT2	M01P06_RL M02P01_RL M02P02_IL	1		1	SDS32					
DUT2	M02P01_RL M02P02_IL	2	6	1	SDD33					
01172	M02P02_IL	4	1	1	S11					
DUTT	M000002 II	2	2	1	S21					
DUTO	IVIUZPU3_IL	2	3	1	SDS31					
DUTT	M02P04_RL	2	4	1	S22					
DUTA	M02P05_IL	2	5	1	SDS32					
DUITO	M02P06_RL	2	6	1	SDD33					
0013	M03P01_RL	3	1	1	S11					
DUT4	M04P01_RL	4	1	1	S11					
DUT5	M05P01_RL	5	1	1	S11					
Channel 1										
		Test Set	Port	Freq Mult	Freq Offs					
	Port 1	1	1							
	Port 2	1	7							
	Port 3	1	12	$-(c) \Delta II$	n hatenn	hannale	and trace	s for mo	asuramant	nath
	Port 4	1	18			nameis		5 101 1116	asurement	ματιτ
		Parameter	Format							
	Irace 1	S11	MLOGarithmic							
	Trace 2	S21	MLOGarithmic							
	Trace 3	SDS31	MLOGarithmic							
	Trace 4	S22	MLOGarithmic							
	Trace 5	SDS32	WLOGarithmic							
	Trace 6	SDD33	WLOGarithmic							
		0	01	Delta	D	IED M	0			
	Course of A	Start	Stop	Points	Power	IFBVV 40000	Sweep Mode			
	Segment 1	50000000	190000000000	51		10000	SIEPped			
Channel 2										
Channel 2										

(a) Set the maximum number of channels and traces on the ENA

Figure 7. Output sheet (Front-End application)

Step 7. System sheet

When a spec sheet is generated by a different version of the Front-End application, it may not be recalled properly by the software depending on software environment. The *System* sheet lets you save all the setup information as a .csv file so that it can be imported by a different version of the software.

Pata ? X
Look in: My Documents

Figure 8. System sheet (Front-End application)

Back-End Application

The Back-End application runs on the ENA as a VBA macro program. This provides the following functionalities:

- 1. Import a spec sheet to the ENA for measurement setup
- 2. Perform calibration with the calibration wizard
- 3. Confirm connection between test system and DUT
- 4. Start measurements
- 5. Display measurement results

The necessary steps for measurements with the Back-End application will be described in detail in the following section.

Step 1. Import a spec sheet to the ENA for measurement setup

You must import a spec sheet (.mwa) to the Back-End application in advance of all measurement procedures.

 Launch the Back-End application on the ENA by selecting [Macro Setup] > Load Project > select the latest version of MWA > [Marco Run]. The main MWA window appears on the ENA's display (Figure 9).

Measurement Wizard Assistant - Rev.A.01.10		X
Spec Sheets (a) Import a sp	pec sheet	
Add Spec Sheet Group	Limit_Test_01	1: 1 - 3
Clear All Groups	C Limit Test 02	1: 4 - 6
	(b) List of re measurer	called spec sheets and allocated ment channels
(c) Launch c	alibration wizard	
Cal Wizard		
Save State	(e) Save a state file	
		(f) Start measurement
Connection Information		Measurement
(d) Confirm connection of test s	system to DUT	Copyright (C) 2005-2008 Agilent Technologies

Figure 9. Main MWA window (Back-End application)

2) Click on Add Spec Sheet Group in the main window to select the spec sheet settings (Figure 9a).

Spec Sheet Group	
Group File (b) Upload a saved group file of spec sheets	
Read Group File Create New Group	
Group File Name D:\Agilent\MWA\Limit_Test_01.ssg	
- Chata Ela	
D\\Acilent\MWA\limit Test 01 sta	···
(a) Import a spee sheet	36
Spec Sheets	
Add Sher Sheets Clear All Sher Sheets	
	Channels
Spec Sheet 1 drianijent/mwa)limit test 01 mwa	01-03
Spec Sheet 2	
Spec Sheet 3	-
Spec Sheet 4	
Spec Sheet 5	-
Spec Sheet 6	-
Spec Sheet 7	10 <u>-</u> 0
Spec Sheet 8	-
Spec Sheet 9 (a) Set up perspectave of recolled once sheet	1.71
Spec Sheet 10 (C) Set up parameters of recalled spec sheets	> _
OK Cancel	

Figure 10. Spec Sheet dialog box (Back-End application)

- A spec sheet generated by the Front-End application is recalled by selecting the Add Spec Sheets (Figure 10a). The recalled spec sheet is uploaded into a spec sheet group. Up to 10 independent spec sheets can be bundled within one group in the Back-End application so that you can perform measurements with different conditions (i.e. different limit values for limit test) on the same devices. Upload multiple spec sheets with Add Spec Sheets and click OK. The group file *.ssg is automatically generated. The generated group file can be uploaded for future use by clicking on Read Group File (Figure 10b).
- 2) Click **OK** (Figure 10c) in the dialog box to have the ENA download all the information on measurement parameters and automatically set them up on the ENA. This may take a few minutes if many parameters have to be set and a number of measurement channels are allocated for measurement. After this operation is completed, a state file (.sta) for the group is generated and automatically saved in the designated directory of the ENA. The number of groups and automatically-allocated channels of the ENA will be displayed on the main window (Figure 9b).

Step 2. Perform calibration using the calibration wizard

The calibration wizard function provided by the Back-End application gives instructions for the calibration procedure and computes all the error coefficients on all the allocated channels on the ENA. A software algorithm optimizes the sequence of connections between the ports and calibration standards reducing the number of required connections.

- 1) Select **Cal Wizard** in the main window (Figure 9b) and the Cal Wizard dialog box is displayed (Figure 11).
- 2) Select the type of calibration and the calibration standard: Mechanical Cal Kit, 4 Port ECal, Power Cal or Receiver Cal (Figure 11a). A number of Agilent Technologies mechanical calibration standards can be used with the calibration wizard on the ENA. Agilent's electronic calibration module, 4 Port ECal, allows you customize the calibration procedure with user-defined characteristics (User 1 to 5). This ECal module enables accurate characterization of devices with different types of connectors.
- Click on Next for the next step of the calibration procedure (Figure 11b). After clicking Next, this procedure may need to be repeated in order to assure that all necessary calibrations¹ have been performed.

Cal Wizard	(a) Select type of		
Туре	Cal Kit		ECal
Mechanical Cal Kit	@ 85033E	C 85054D	Factory
C 4 Port FCal	C 85033D	C 85056D	C User1
	C 85052D	C 85056K	C User2
C Power Cal	C 85032F	C 85039B	C User3
C Receiver Cal	C 85032B/E	C X11644A	C User4
JJ	C 85036B/E	C P11644A	C User5
Averaging Count 1	C 85031B	C K11644A	
	C 85050C/D	C User	
	C 85052C	C User	
	C 85038A/F/M	C User	
	C User	C User	
	C User	C User	
	C User	C User	
	C User	C User	
	C User	C User	(b) Select Next to continu
	< Back	Next >	Cancel

Figure 11. Calibration wizard dialog box (Back-End application)

^{1.} Calibration of the ENA is limited to 4 ports at one time.

As previously mentioned, the calibration wizard provides step-by-step instructions of the calibration procedure while minimizing the number of connections to calibration standards. When a connection is "grayed out" during the procedure, it means that you don't need to disconnect the standard from the port or change any settings before the next measurement sweep for calibration is made (Figure 12a). The current step and the total number of calibration steps are displayed in the title bar of the dialog box (Figure 12b).

The state file of the group is overwritten after all the calibration steps are completed.

(b) Calibration step (1 out of	2)		(b) Calibration step (2 out of 2)							
Cal Wizard [1/2]			Cal Wizard [2/2]	X						
Port	Cal Kit		Port	Cal Kit						
TS1 - 7 (1D)	4 Port ECal		TS1 - 7 (1D)	4 Port ECal						
TS1 - 4 (9COM)	4 Port ECal		TS1 - 8 (2D)	4 Port ECal						
TS1 - 5 (7COM)	4 Port ECal									
TS1 - 10 (3D)	4 Port ECal									
	Messure	Tno	*Unnecessary to reconnect the gray colored Port/Cal Kit.	Measure						
	(4) 50									
< Bac	ok Next > Cancel		< B.	ack Done Cancel						

Figure 12. Calibration wizard dialog box (Back-End application)

Step 3. Confirm connections between the test system and the DUT

The Back-End application offers a unique functionality which confirms correct connection between the DUT and the instrument ports. Select **Connection Information** on the main window (Figure 9d), to display connection information in the dialog box (Figure 13). This dialog box shows the ENA and multiport test set connected correctly (In this figure, "NA" stands for the ENA network Analyzer and "TS1" stands for the E5092A configurable multiport test set). This eliminates the possibility of connection between incorrect ports, and facilitates multiple connections for multiport network analysis.

Once all the steps have been completed, the state file for the group can be overwritten using **Save State** button in the main window (Figure 9e). This should be completed before testing begins.

Figure 13. Connection Information dialog box (Back-End application)

Step 4. Start measurements

The Back-End application controls the overall measurement sequence of spec sheets. The software features a wide variety of measurement functionalities allowing you to easily customize measurement conditions for your application in the spec sheets.

- Select Measurement on the main window of the Back-End application (Figure 9f) to start the measurement sequence and display the measurement window for all spec sheets (Figure 14). Measurement results for each spec sheet including overall pass/fail results, yield rates and approximate total testing time are summarized in measurement window (Figure 14a).
- 2) Select **Manual Trigger** to initiate the measurement using a manual trigger (Figure 14b). The summary of measurement results (Figure 14a) is updated after the measurement is performed.

Mea	surement Wizard Assi	istant										
	(a) Summary of	f me	asuren	nent resu	lts for a s	pec sheet		Lief	Minimizo			
								Hali	Minimize			
					lot_na	ime						
			P/F	Total	Pass	Yield	Time	Manua	al Trigger			
•	Limit_Test_01	•		0	0	0.00 %	0ms					
	Limit_Test_02	•		0	0	0.00 %	0ms	Selected	Measurement			
	Spec Sheet 3				52 - 4 - 4			Continue	bus			
	Spec Sheet 4				8				Skip			
	Spec Sheet 5					b) Start me	asurement	with manu	ual trigger			
	Spec Sheet 6											
	Spec Sheet 7											
	Spec Sheet 8							New Me	asurement			
	Spec Sheet 9				8							
	Spec Sheet 10				8			End Me	asurement			

(c) Allocate a portion of the display window for the Back-End application

Figure 14. Measurement window for all spec sheets (Back-End application)

Step 5. Analyze measurement results

The Back-End application provides you with detailed measurement reports for more accurate analysis of DUTs. You can analyze the result of each measurement path of the DUT with different specifications using multiple spec sheets, and capture all the characteristics of the device with a single measurement.

- 1) Select the name of the spec sheet (Figure 15a), and the dialog box which is used for measurement by the spec sheet is displayed (Figure 15).
- Select Manual Trigger (Figure 15b) to initiate measurement of the mode sheets. The total pass/fail result for the spec sheet is highlighted at the top of the dialog box (Figure 15c), and a detailed report is given for each operation mode.
- 3) Select a mode (Figure 15d) to display a detailed analysis report of the mode (result verification by mode). This contains the pass/fail result for each measurement path in the selected mode. Note that the limit test is performed with parameters retrieved from external peripherals as well.

Measurements of all spec sheets

Dialog box for measurement by spec sheet

Dialog box for result verification

Figure 15. Measurement analysis with MWA software

In order to evaluate an actual trace of the DUT, there are **Half** and **Minimize** keys on top of the measurement window for all spec sheets (Figure 14c). This function allows you to re-arrange the measurement channel locations on the ENA. This provides you with better visibility of measurement traces and easy access to them for further investigation. When you select the **Half** button, the window of the Back-End application is located at the bottom half of the ENA display (Figure 16a). You can view the behavior of measured traces on the ENA display and easily examine the margin of the limit line tests. (Note you need to customize and define the channel scale on the ENA as this function is not supported by the MWA.) The bottom half of the window displays the number of channels and traces of failed measurement paths (Figure 16b), which you can refer to for more detailed information. If the check box of **Disp Enable** (Figure 16c) is selected in the dialog box, the display update function is activated; this updates images on the display of the ENA. This function should be disabled when fast testing speeds are required.

71C Network Analyze

(d) Minimized window of Back-End application

(c) Checkbox of Display Enable function

10 dB/div

Maximize Measure

Measurement Example

A measurement example of the MWA Front-End application is provided in this section.

In this example, the DUT is an RF SP9T (single-pole, nine-throw) multiport switch (Figure 17). These switches are typically installed in cellular handsets with multiband functionality. S-parameter measurements are performed on all paths out of the 10 ports while switching the output port of the DUT. The connected output port is determined by 4-bit logic control signals to Vc1 to Vc4 inputs. Power supply voltage is applied to the Vdd pin of the DUT. Both DC control voltages and power supply voltage are applied from the E5092A via a control line connector.

Figure 17. Block diagram of an SP9T multiport switch

(1) Configuration setup

A full crossbar measurement is required for this DUT, so the 10-port full crossbar configuration of the E5092A (E5092A X10-Port) should be selected in *Multiport Test Set* sheet of the Front-End application. The block diagram of the configuration is indicated in Figure 18. This configuration lets you make any 2-port measurement between the 10 ports of the DUT. See the measurement connectivity matrix (Figure 19).

Figure 18. Block diagram of a 10-port full crossbar configuration

Figure 19. Setup example of a Multiport Test Set sheet for a multiport switch

(2) DUT information

Characteristics for all ports of the DUT are entered into the *DUT* sheet. The effect of the fixtures used in the test can be eliminated by using functions on the ENA such as port extension de-embedding or port matching.

	DUT		Test Set	Test Set Z (Single)		-	Z (Baland	ced)	Extension	Embedding File	De-Embedding File		Port Mat
	Label	Sub Label	Port	R	X	Type	R	X	[nsec]	(s2p file in an NA)	(s2p file in an NA)	Туре	C [F]
Port 1	ANT	ANT+	TS1: 1	50	1	0 Cmn			0		Fixture ANT port file.s2p	NONE	0
	Single	ANT-	0	50		0 Diff			0			NONE	0
Port 2	Tx1	Tx1+	TS1: 2	50	4	0 Cmn			0.45			NONE	0
	Single	Tx1-		50		0 Diff			0			NONE	0
Port 3	Tx2	Tx2+	TS1: 3	50		0 Cmn			0.45			NONE	0
	Single	Tx2-		50		0 Diff			0			NONE	0
Port 4	TRx1	TRx1+	TS1:4	50		0 Cmn			0.50			NONE	0
	Single	TRx1-		50		0 Diff			0			NONE	0
Port 5	TRx2	TRx2+	TS1: 5	50	1	0 Cmn		1	0.50			NONE	0
	Single	TRx2-		50		0 Diff			0			NONE	0
Port 6	TRx3	TRx3+	TS1: 6	50	1	0 Cmn			0.50			NONE	0
	Single	TRx3-		50		0 Diff			0			NONE	0
Port 7	Rx1	Rx1+	TS1: 7	50		0 Cmn			0			SLPC	1E-08
	Single	Rx1-		50		0 Diff			0			NONE	
Port 8	Rx2	Rx2+	TS1: 8	50		0 Cmn			0			SLPC	1E-08
	Single	Rx2-		50		0 Diff			0			NONE	0
Port 9	Rx3	Rx3+	TS1: 9	50		0 Cmn			0			SLPC	1E-08
	Single	Rx3-		50		0 Diff			0			NONE	0
Port 10	Rx4	Rx4+	TS1: 10	50	1	0 Cmn			0			SLPC	1E-08

Figure 20. Setup example of a DUT sheet for a multiport switch

(3) Operating mode

The operating mode of the DUT during measurement is defined in the *Mode* sheet. Power supply voltage and DC control voltage for the selected operating mode of the DUT are supplied by the E5092A. The 4-bit signals of 2.8V from **Group A** are applied to the Vc1 to Vc4 inputs of the DUT for the control voltage, and 1-bit signal of 2.8V from **Group B** is applied to the Vdd input for power supply.

		Mode Label		Control Line Voltage Group A [T S1]					Control Line Voltage Group B [TS1]			Control Line Voltage Group C [TS1]			Control Line Voltage Group D [TS1]			tage 1]	DC Source Output Voltage [TS1] [V]							
			Vc1	Vc2	Vc3	Vc4	Vc5	Vc6	Vc7	Vc8	Vc1	Vc2	Vc3	Vc4	Vc1	Vc2	Vc3	Vc4	Vc1	Vc2	Vc3	Vc4	A	B	C	D
Mode 1	ON	Tx1	Н	L	L	L	L	L	L	L	Н	L	L	L	L	L	L	L	L	L	L	L	2.80	2.80	1.00	1.00
Mode 2	ON	Tx2	L	Н	L	L	L	L	L	L	Н	L	L	L	L	L	L	L	L	L	L	L	2.80	2.80	1.00	1.00
Mode 3	ON	TRx1	Н	H	L	L	L	L	L	L.	Н	L	L	L	L	L	L	L.	L	L	L	L	2.80	2.80	1.00	1.00
Mode 4	ON	TRx2	L	L	H	L	L	L	L	L	Н	L	L	L	L	L	L	L	L	L	L	L	2.80	2.80	1.00	1.00
Mode 5	ON	TRx3	Н	L	H	L	L	L	L	L	Н	L	L	L	L	L	L	L	L	L	L	L	2.80	2.80	1.00	1.00
Mode 6	ON	Rx1	L	Н	H	L	L	L	L	L	Н	L	L	L	L	L	L	L	L	L	L	Ĺ	2.80	2.80	1.00	1.00
Mode 7	ON	Rx2	Н	H	H	L	L	L	L	L	Н	L	L	L	L	L	L	L	L	L	L	L	2.80	2.80	1.00	1.00
Mode 8	ON	Rx3	L	L	L	Н	L	L	L	L	Н	L	L	L	L	L	L	L	L	L	L	L	2.80	2.80	1.00	1.00
Mode 9	ON	Rx4	Н	L	L	Н	L	L	L	L	Н	L	L	L	L	L	L	L	L	L	L	L	2.80	2.80	1.00	1.00

Figure 21. Setup example of a Mode sheet for a multiport switch

(4) GPIB command setup

SCPI commands registered in the *GPIB* sheet are sent to a digital voltmeter at GPIB address 7 during measurement on the ENA. Returned query values are used for limit tests by the Back-End application.

		GPIB Cor	2	GPIB Limit					
Mode	Address	Command	Wait [ms]	Type	Min	Max	Rank		
INIT	7	*RST	0	100 m					
Tx1	7	INIT	0	Pre			1		
	7	*TRG	0	Pre			1		
	7	FETCH?	2	Limit		1e-3	1		
Tx2	7	INIT	0	Pre		1.	1		
	7	*TRG	0	Pre			1		
	7	FETCH?	2	Limit		1e-3	1		
TRx1	0		0	Limit		1	1		
TRx2	0	1	0	Limit			1		
TRx3	0		0	Limit			1		
Rx1	0		0	Limit			1		
Rx2	0		0	Limit			1		
Rx3	0	1	0	Limit		1	1		
Rx4	0		0	Limit			1		

Figure 22. Setup example of a GPIB sheet for a multiport switch

(5) Parameter setup

All the stimulus parameters for the measurement including frequency range, number of points, output power level and IFBW are set up in the *Spec Sheet* spreadsheet. Specification values of the DUT are entered for the limit tests in the Back-End application.

	Path				Free	uency [Mi	tz]	Rovr Freq [MHz]		Sweep Settings			Spec		Co
Mode	From		To	Туре	Start	Stop	Pts	Start	Stop	Power [dBm]	IFBW [Hz]	Sweep Mode	Min	Max	Sta
Tx1	ANT	->	ANT	RL	800	930	51			0.00	100,000	Std. Stepped	20		
	Tx1	->	Tx1	RL	800	930	51			0.00	100,000	Std. Stepped	20		
	ANT	->	Tx1	L	800	930	51			0.00	100,000	Std. Stepped		1.5	
	ANT	->	Tx2	Isolation	800	930	51			0.00	100,000	Std. Stepped	35		
	ANT	->	TRx1	Isolation	800	930	51			0.00	100,000	Std. Stepped	35		
	ANT	->	TRx2	Isolation	800	930	51			0.00	100,000	Std. Stepped	35		
	ANT	->	TRx3	Isolation	800	930	51			0.00	100,000	Std. Stepped	35		
	ANT	->	Rx1	Isolation	800	930	51			0.00	100,000	Std. Stepped	35		
	ANT	->	Rx2	Isolation	800	930	51			0.00	100,000	Std. Stepped	35		
	ANT	->	Rx3	Isolation	800	930	51			0.00	100,000	Std. Stepped	35		
	ANT	->	Rx4	Isolation	800	930	51			0.00	100,000	Std. Stepped	35		
	Tx1	->	Tx2	Isolation	800	930	51			0.00	100,000	Std. Stepped	25		
	Tx1	->	TRx1	Isolation	800	930	51			0.00	100,000	Std. Stepped	25		
	Tx1	->	TRx2	Isolation	800	930	51			0.00	100,000	Std. Stepped	25		
	Tx1	->	TRx3	Isolation	800	930	51			0.00	100,000	Std. Stepped	25		
	Tx1	->	Rx1	Isolation	800	930	51			0.00	100,000	Std. Stepped	40		
	Tx1	->	Rx2	Isolation	800	930	51			0.00	100,000	Std. Stepped	40		
	Tx1	->	Rx3	Isolation	800	930	51			0.00	100,000	Std. Stepped	40		
	Tx1	->	Rx4	Isolation	800	930	51			0.00	100,000	Std. Stepped	40		
Tx2	ANT	->	ANT	RL	1710	1920	51			0.00	100,000	Std. Stepped		() (
TRx1	ANT	->	ANT	RL	800	960	51			0.00	100,000	Std. Stepped			
TRx2	ANT	->	ANT	RL	1850	2000	51			0.00	100,000	Std. Stepped			
TRx3	ANT	->	ANT	RL	1920	2170	51			0.00	100,000	Std. Stepped			
Rx1	ANT	->	ANT	RL	820	925	51			0.00	100,000	Std. Stepped		1 1	
Rx2	ANT	->	ANT	RL	925	960	51			0.00	100,000	Std. Stepped			
Rx3	ANT	->	ANT	RL	1805	1880	51			0.00	100,000	Std. Stepped			
Rx4	ANT		ANT	DI	1020	1000	54		1	0.00	100 000	Cid Cinoned	5	2	

Figure 23. Setup example of a Spec Sheet spreadsheet for a multiport switch

Summary

This application note showed you how to simplify multiport measurements using MWA software with the ENA network analyzer and multiport test set. In most cases, measurement speed of the network analyzer is not the only factor in increasing throughput in testing. The time spent connecting the devices to measurement instruments, calibrating the instrument and setting up of the measurement parameters is much longer than actual measurement time of the network analyzer. Using the MWA software saves you a lot of setup and calibration time and eliminates many of the operator errors that can result in network analysis failure.

Required Hardware and Software for the ENA Multiport Solution

E5071CENA network analyzerE5092AConfigurable multiport test setE5071C-790 orMeasurement Wizard Assistant software
Measurement Wizard Assistant software (upgrade product)

References

ENA Series Web page: www.agilent.com/find/ena Multiport test sets Web page: www.agilent.com/find/multiport MWA Web page: www.agilent.com/find/mwa

Related Literature

ENA Network Analyzers and E5092A Configurable Multiport Test Set Brochure, Literature number **5989-5478EN**

ENA Network Analyzers and E5092A Configurable Multiport Test Set Data Sheet, Literature number **5989-5479EN**

ENA Network Analyzers and E5092A Configurable Multiport Test Set Configuration Guide, Literature number **5989-5480EN**

Comprehensive Multiport Solution for the ENA Network Analyzer Application Note, Literature number **5989-8737EN**

Agilent Email Updates

www.agilent.com/find/emailupdates

Get the latest information on the products and applications you select.

www.agilent.com/find/agilentdirect

Quickly choose and use your test equipment solutions with confidence.

www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

LXI

www.lxistandard.org

LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to

www.agilent.com/find/removealldoubt

www.agilent.com www.agilent.com/find/ena

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada	(877) 894-4414
atin America	305 269 7500
United States	(800) 829-4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Thailand	1 800 226 008

Europe & Middle East

Austria	01 36027 71571
Belgium	32 (0) 2 404 93 40
Denmark	45 70 13 15 15
Finland	358 (0) 10 855 2100
France	0825 010 700*
	*0.125 €/minute
Germany	07031 464 6333**
	**0.14 €/minute
Ireland	1890 924 204
Israel	972-3-9288-504/544
Italy	39 02 92 60 8484
Netherlands	31 (0) 20 547 2111
Spain	34 (91) 631 3300
Sweden	0200-88 22 55
Switzerland	0800 80 53 53
United Kingdom	44 (0) 118 9276201
Other European Co	untries:
www.agilent.com/	find/contactus
Revised: July 17, 2008	

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2008 Printed in USA, September 30, 2008 5989-4855EN

