

Diving Deeper: A Detailed Side-by-Side Comparison of the PSA and the PXA

Technical Overview

See how the N9030A PXA high-performance signal analyzer compares with its venerable predecessor, the E444xA PSA. This side-by-side comparison includes specifications, functional block diagrams, features, example measurement screens, form factors, and more.

Multifaceted superiority and compatibility offered by the PXA pave the way for your seamless migration from the PSA to the PXA.

Table of Contents

Introduction	2
Side-by-Side Comparison	3
Simplified functional block diagrams	3
Frequency specifications	4
Amplitude specifications	6
Dynamic range-related specifications	7
Simplified block diagrams showing wideband IF digital processing	13
Analysis bandwidth specifications	13
General specifications	15
Front panel	16
Rear panel	16
IF output characteristics	17
Measurement personalities/application software .	18
PSA to PXA models/options cross reference	19
Related Agilent Literature	19
Warranty Information (Remove All Doubt)	Back cover
Contact Agilent	Back cover

Introduction

The Agilent RF/microwave PSA (E4440A/43A/45A) high-performance spectrum analyzers, introduced a decade ago, have been the standard, serving the aerospace/defense and communications industries in applications that demand the most stringent signal analysis capabilities.

Now, the N9030A PXA highperformance signal analyzer has been introduced to help you meet the challenges of an increasingly competitive market that demands yet greater capabilities and performance from your signal analysis solution. The PXA is ideally suited to meet today's and tomorrow's technological challenges, while maintaining the best form-fit-functional compatibility with the PSA. Migrating to the PXA helps to sustain your past achievements, enhance your current designs and accelerate your future innovations.

The technical overview titled "Why Migrate from the PSA to the PXA?" (Agilent literature number 5990-3990EN) summarizes the key advantages of the PXA over the PSA. Complementary to that document, this one provides a more comprehensive comparison of PXA and PSA specifications. It is intended to provide a "like-to-like" comparison. In cases where the structural differences between the PXA and the PSA make such a comparison impossible, the most appropriate comparison will be provided. Please refer to the PSA or PXA specification guide if you need more details.

Simplified functional block diagrams

The PXA architecture has been designed such that it is the ideal evolutionary replacement for the PSA.

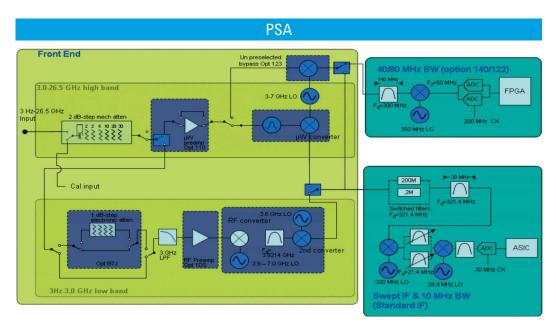


Figure 1. PSA simplified block diagram

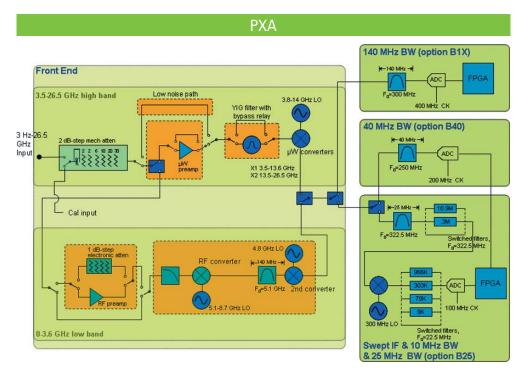


Figure 2. PXA simplified block diagram

Frequency specifications

	PSA	۱.		PXA	
Frequency	range		Frequency range		
			N9030A Option 503	(DC Coupled) (AC Coupled)	3 Hz to 3.6 GHz 10 MHz to 3.6 GHz
E4443A	(DC Coupled) (AC Coupled)	3 Hz to 6.7 GHz 20 MHz to 6.7 GHz	N9030A Option 508	(DC Coupled) (AC Coupled)	3 Hz to 8.4 GHz 10 MHz to 8.4 GHz
E4445A	(DC Coupled) (AC Coupled)	3 Hz to 13.2 GHz 20 MHz to 13.2 GHz	N9030A Option 513	(DC Coupled) (AC Coupled)	3 Hz to 13.6 GHz 10 MHz to 13.6 Gł
E4440A	(DC Coupled) (AC Coupled)	3 Hz to 26.5 GHz 20 MHz to 26.5 GHz	N9030A Option 526	(DC Coupled) (AC Coupled)	3 Hz to 26.5 GHz 10 MHz to 26.5 GH
Band	N ¹		Band	N ¹	
0	1	3 Hz to 3 GHz	0	1	3 Hz to 3.6 GHz
1	1	2.85 to 6.6 GHz	1	1	3.5 to 8.4 GHz
2	2	6.2 to 13.2 GHz	2	2	8.3 to 13.6 GHz
3	4	12.8 to 19.2 GHz	3	2	13.5 to 17.1 GHz
4	4	18.7 to 26.8 GHz	4	4	17 to 26.5 GHz

1. N is the "harmonic mixing mode" for PSA, whereas it is the "LO multiplication factor" for PXA. These two parameters are equivalent in the context presented here.

Notes:

In this document, terms of specifications, 95th percentile values, typical, and nominal are used to describe the instrument's performance.

- Specifications describe the performance of parameters covered by the product warranty and apply to full temperature range unless otherwise noted.
- 95th percentile values indicate the breath of the population (approximately 2 σ) of performance tolerances expected to be met in 95% of cases with a 95% confidence, for any ambient temperature in the range of 20 to 30 °C. These values are not warranted.
- Typical describes additional product performance information that is not covered by the product warranty. It is performance beyond specifications that 80% of the units exhibit with a 95% confidence level over the temperature range of 20 to 30 °C. Typical performance does not include measurement uncertainty.
- Nominal values indicate expected performance, or describe product performance that is useful in the application of the
 product, but is not covered by the product warranty.

Please refer to the PXA data sheet (publication number 5990-3952EN) and the PSA data sheet (publication number 5980-1284E) for more details on the term definitions and measurement conditions.

Frequency specifications

	PSA	РХА		
Frequency reference	ces			
Accuracy	±[(time since last adjustment x aging rate) + temperatu	re stability + calibration accuracy]		
Aging rate	±1 x 10 ⁻⁷ /year	±1 x 10 ⁻⁷ /year		
Temperature stability 20 °C to 30 °C 0 °C to 55 °C	±1 x 10 ⁻⁸ ±5 x 10 ⁻⁸	±1.5 x 10 ⁻⁸ ±5 x 10 ⁻⁸		
Achievable initial calibration accuracy	±7 x 10 ⁻⁸	±4 x 10 ⁻⁸		
Example frequency reference accuracy (1 year after last adjustment)	$= \pm (1 \times 1 \times 10^{-7} + 1 \times 10^{-8} + 7 \times 10^{-8})$ = \pm 1.8 \times 10^{-7}	$= \pm (1 \times 1 \times 10^{-7} + 1.5 \times 10^{-8} + 4 \times 10^{-8})$ = \pm 1.65 \times 10^{-7}		
Sweep (trace) poin	t range			
Factory preset	601	1001		
Span = 0 Hz	2 to 8192	1 to 40,001		
Span ≥ 10 Hz	101 to 8192	1 to 40,001		
Gated sweep				
Gate length	10 µs to 500 ms	1 µs to 5.0 s		
Gate delay range	0 to 500 ms	0 to 100.0 s		
Gate delay jitter	33.3 ns p-p nominal	33.3 ns p-p nominal		
Resolution bandwid	dth (RBW)			
Range (–3.01 dB bandwidth)	1 Hz to 3 MHz (in 10% steps) 4, 5, 6, 8 MHz	1 Hz to 3 MHz (in 10% steps) 4, 5, 6, 8 MHz		
Power bandwidth	(all CFs) 1 Hz to 51 kHz ±0.5% (±0.022 dB)	(all CFs) 1 Hz to 51 kHz $\pm 0.5\%$ (± 0.022 dB)		
accuracy	(all CFs) 56 kHz to 100 kHz $\pm 1.0\%$ (± 0.044 dB)	(all CFs) 56 kHz to 100 kHz $\pm 0.5\%$ (± 0.022 dB)		
	(all CFs) 110 kHz to 240 kHz ±0.5% (±0.022 dB)	(\leq 3.6 GHz CF) 110 kHz to 1.0 MHz ±1.0% (±0.044 dB)		
	$(< 3 \text{ GHz CF})$ 270 kHz to 1.1 MHz $\pm 1.5\% (\pm 0.066 \text{ dB})$	(\leq 3.6 GHz CF) 1.1 MHz to 2.0 MHz ±0.07 dB nominal		
	(< 3 GHz CF) 1.2 MHz to 2.0 MHz ± 0.07 dB nominal	(\leq 3.6 GHz CF) 2.2 MHz to 3 MHz ±0.10 dB nominal		
	(< 3 GHz CF) 2.2 MHz to 6.0 MHz ± 0.20 dB nominal	$(\leq 3.6 \text{ GHz CF})$ 3 MHz to 8 MHz ±0.20 dB nominal		
RBW bandwidth	(all CFs) 1 Hz to 1.5 MHz ±2.0% nominal	(all CFs) 1 Hz to1.3 MHz ±2.0% nominal		
accuracy (–3.01 dB BW)	$ \begin{array}{ll} (\leq 3 \mbox{ GHz CF}) & 1.6 \mbox{ MHz to } 3 \mbox{ MHz} & \pm 7.0\% \mbox{ nominal} \\ (\leq 3 \mbox{ GHz CF}) & 4 \mbox{ MHz to } 8 \mbox{ MHz} & \pm 15.0\% \mbox{ nominal} \end{array} $	$ (\leq 3.6 \text{ GHz CF}) \ 1.5 \text{ MHz to } 3 \text{ MHz} \\ (\leq 3.6 \text{ GHz CF}) \ 4 \text{ MHz to } 8 \text{ MHz} \\ \pm 15.0\% \text{ nominal} $		
Selectivity (–60 dB/–3 dB)	4.1:1 nominal	4.1:1 nominal		
EMI bandwidths	(CISPR compliant) 200 Hz, 9 kHz, 120 kHz, 1 MHz	(CISPR compliant) ¹ 200 Hz, 9 kHz, 120 kHz, 1 MHz		
EMI bandwidths	(MIL STD 461E) 10 Hz, 100 Hz, 1 kHz, 10 kHz, 1 MHz	(MIL STD 461E) ¹ 10 Hz, 100 Hz, 1 kHz, 10 kHz, 1 MHz		

1. Option EMC required.

Amplitude specifications

		PSA		РХА
Amplitude range				
Measurement range	Displayed average n	oise level to +30 dBm	Displayed average n	oise level to +30 dBm
Input attenuator range	(3 Hz to 26.5 GHz)	0 to 70 dB in 2 dB steps	(3 Hz to 26.5 GHz)	0 to 70 dB in 2 dB steps
Maximum safe inpu	ıt level			
Average total power		+30 dBm (1 W)		+30 dBm (1 W)
With preamplifier	Option 1DS Option 110	+30 dBm +23 dBm	Option P03 Options P08, P13, P2	+30 dBm (1 W) 26 +30 dBm (1 W)
Peak pulse power < 10 µs pulse width, < 1% duty cycle and input attenuation ≥ 30 dB	+50 dBm (100 W)		+50 dBm (100 W)	
DC volts	(DC coupled) (AC coupled)	< ±0.2 Vdc ±100 Vdc	(DC coupled) (AC coupled)	< ±0.2 Vdc ±70 Vdc
Frequency response	e (10 dB input attenu	ation, 20 to 30 °C, preselector cent	ering applied above 3	GHz)
	3 Hz to 10 MHz 10 MHz to 3 GHz 3 to 6.6 GHz 6.6 to 13.5 GHz 13.5 to 22 GHz 22 to 26.5 GHz	± 0.38 dB (± 0.11 dB typical) ± 0.38 dB (± 0.11 dB typical) ± 1.50 dB (± 0.60 dB typical) ± 2.00 dB (± 1.0 dB typical) ± 2.00 dB (± 1.0 dB typical) ± 2.50 dB (± 1.3 dB typical)	3 Hz to 10 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 22 GHz 22 to 26.5 GHz	±0.46 dB (±0.19 dB 95th %) ±0.35 dB (±0.16 dB 95th %) ±1.5 dB (±0.39 dB 95th %) ±2.0 dB (±0.45 dB 95th %) ±2.0 dB (±0.62 dB 95th %) ±2.5 dB (±0.82 dB 95th %)
Total absolute ampl (10 dB input attenuatio except Auto Swp Time	n, 20 to 30 °C, 10 Hz	≤ RBW ≤ 1 MHz, input signal –10 e level, any scale)	dBm to –50 dBm, all	settings auto-coupled
	At 50 MHz At all frequencies 3 Hz to 3 GHz	±0.24 dB (±0.24 dB + frequency response) ±0.19 dB (95th %)	At 50 MHz At all frequencies 0.01 to 3.6 GHz	±0.24 dB (±0.24 dB + frequency response) ±0.19 dB (95th %)
Input voltage stand	ing wave ratio (≥ 8	3 dB input attenuation)		
	50 MHz to 3 GHz 3 GHz to 18 GHz 18 GHz to 26.5 GHz	< 1.2:1 nominal < 1.6:1 nominal < 1.9:1 nominal	50 MHz to 3.6 GHz 3 GHz to 18 GHz 18 GHz to 26.5 GHz	< 1.6:1 nominal

1. This absolute amplitude accuracy specification includes the sum of the following contributing factors: Scale fidelity, reference level accuracy, displayed scale switching uncertainty, resolution bandwidth switching uncertainty, 50 MHz amplitude reference accuracy, and the accuracy with which the instrument aligns its internal gains to the 50 MHz amplitude reference.

Dynamic range-related specifications

on (two-tone) 20 to 200 MHz 200 MHz to 6.6 GHz 6.6 GHz to 26.5 GHz	Maximum mixer level 0 dBm +3 dBm -2 dBm			40 to 200 MHz 200 MHz to 3.6 GHz	Maximum mixer level –1 dBm	mix (20	kimum er level - 30 °C)
200 MHz to 6.6 GHz 6.6 GHz to 26.5 GHz	mixer level 0 dBm +3 dBm				mixer level	mix (20	er level
				3.6 to 16 GHz	+2 dBm 0 dBm	+3 c +1 c	, IBm IBm IBm
				16 to 26.5 GHz	–3 dBm	—1 d	Bm
stortion (SHI)							
Source	Mixer level		Distortion	Source	Mixer level	SHI	Distortion
frequency	(dBm)	(dBm)	(dBc)	frequency	(dBm)	(dBm)	(dBc)
10 MHz to 460 MHz	-40	+42	-82	10 to 100 MHz	–15	+42	57
460 MHz to 1.18 GHz	-40	+52	-92	100 MHz to 1.8 GHz	–15	+45	-60
1.18 GHz to 1.5 GHz	-40	+42	-82	1.75 to 6.5 GHz	–15	+62	-77
1.5 GHz to 2.0 GHz	-10	+80	-90	6.5 to 10 GHz	–15	+55	-70
2.0 GHz to 13.25 GHz	-10	+90	-100	10 to 13.25 GHz	–15	+47	-62
stortion (SHI) with (Option LNP	enable	ed ¹				
N/A				Source frequency 10 to 100 MHz 100 MHz to 1.8 GHz 1.75 to 2.5 GHz 2.5 to 4 GHz	(dBm) N/A N/A –15 –15	(dBm) N/A N/A +80 +86	Distortion (dBc) N/A N/A -95 -101 -105
S f 1 1 2 5	requency 10 MHz to 460 MHz 160 MHz to 1.18 GHz 1.18 GHz to 1.5 GHz 1.5 GHz to 2.0 GHz 2.0 GHz to 13.25 GHz tortion (SHI) with	Source Mixer level (dBm) requency (dBm) 10 MHz to 460 MHz -40 660 MHz to 1.18 GHz -40 1.18 GHz to 1.5 GHz -40 1.5 GHz to 2.0 GHz -10 2.0 GHz to 13.25 GHz -10 tortion (SHI) with Option LNP	Source Mixer level (dBm) SHI (dBm) requency (dBm) (dBm) 10 MHz to 460 MHz -40 +42 60 MHz to 1.18 GHz -40 +52 1.18 GHz to 1.5 GHz -40 +42 5 GHz to 2.0 GHz -10 +80 2.0 GHz to 13.25 GHz -10 +90 tortion (SHI) with Option LNP enable	Source Mixer level (dBm) SHI (dBm) Distortion (dBc) 10 MHz to 460 MHz -40 +42 -82 10 MHz to 1.18 GHz -40 +52 -92 1.18 GHz to 1.5 GHz -40 +42 -82 5 GHz to 2.0 GHz -10 +80 -90 2.0 GHz to 13.25 GHz -10 +90 -100 tortion (SHI) with Option LNP enabled ¹	Mixer level SHI Distortion (dBm) Source frequency 10 MHz to 460 MHz -40 +42 -82 10 to 100 MHz 100 MHz to 1.18 GHz -40 +52 -92 100 MHz to 1.8 GHz 1.18 GHz to 1.5 GHz -40 +42 -82 1.75 to 6.5 GHz 1.5 GHz to 2.0 GHz -10 +80 -90 6.5 to 10 GHz 2.0 GHz to 13.25 GHz -10 +90 -100 10 to 13.25 GHz tortion (SHI) with Option LNP enabled ¹ Source frequency 10 to 100 MHz V/A	Source Mixer level SHI Distortion Source Mixer level frequency (dBm) (dBm) (dBc) frequency (dBm) (dBm) (dBm) (dBm) (10 to 100 MHz -15 (10 to 130 MHz -15 (10 to 13.25 GHz -10 +80 -90 6.5 to 10 GHz -15 (10 to 13.25 GHz -15 (10 to 13.25 GHz -15 (10 to 13.25 GHz -15 (10 to 100 MHz N/A (1.75 to 2.5 GHz -15 <th< td=""><td>Source Mixer level SHI Distortion (dBm) Source Mixer level SHI 10 MHz to 460 MHz -40 +42 -82 10 to 100 MHz -15 +42 160 MHz to 1.18 GHz -40 +52 -92 100 MHz to 1.8 GHz -15 +42 1.18 GHz to 1.5 GHz -40 +42 -82 1.75 to 6.5 GHz -15 +45 1.5 GHz to 2.0 GHz -10 +80 -90 6.5 to 10 GHz -15 +55 2.0 GHz to 13.25 GHz -10 +90 -100 10 to 13.25 GHz -15 +47 tortion (SHI) with Option LNP enabled¹ -15 -15 +47 V/A V/A N/A N/A N/A</td></th<>	Source Mixer level SHI Distortion (dBm) Source Mixer level SHI 10 MHz to 460 MHz -40 +42 -82 10 to 100 MHz -15 +42 160 MHz to 1.18 GHz -40 +52 -92 100 MHz to 1.8 GHz -15 +42 1.18 GHz to 1.5 GHz -40 +42 -82 1.75 to 6.5 GHz -15 +45 1.5 GHz to 2.0 GHz -10 +80 -90 6.5 to 10 GHz -15 +55 2.0 GHz to 13.25 GHz -10 +90 -100 10 to 13.25 GHz -15 +47 tortion (SHI) with Option LNP enabled ¹ -15 -15 +47 V/A V/A N/A N/A N/A

1. Specifications given for the N9030A PXA low noise path require Option LNP and that the low noise path be enabled (ON). The low noise path operates from 3.6 to 26.5 GHz (equivalent to 1.75 to 13.25 GHz source frequency in the SHI measurements). The LNP significantly improves SHI performance at higher bands.

		PSA			PXA			
Third-order intermodulation distortion (TOI) (Tone separation > 15 kHz, 20 to 30 °C)								
		TOI	TOI typical		TOI	TOI typical		
	10 to 100 MHz	+14 dBm	+17 dBm	10 to 150 MHz	+13 dBm	+16 dBm		
	100 to 400 MHz	+15 dBm	+18 dBm	150 to 600 MHz	+18 dBm	+21 dBm		
	400 MHz to 1.7 GHz	+16 dBm	+19 dBm	600 MHz to 1.1 GHz	+20 dBm	+22 dBm		
	1.7 to 2.7 GHz	+17 dBm	+19 dBm	1.1 to 3.6 GHz	+21 dBm	+23 dBm		
	2.7 to 3.0 GHz	+17 dBm	+20 dBm	3.5 to 8.4 GHz	+15 dBm	+22 dBm		
	3.0 to 6.0 GHz	+15 dBm	+18 dBm	8.3 to 13.6 GHz	+15 dBm	+23 dBm		
	6.0 to 16 GHz	+8 dBm	+11 dBm	13.5 to 17.1 GHz	+11 dBm	+17 dBm		
	16 to 26.5 GHz	+12 dBm	+14 dBm	17.0 to 26.5 GHz	+10 dBm	+17 dBm nominal		

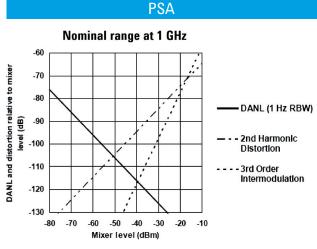


Figure 3. Nominal PSA DR plot at 1 GHz

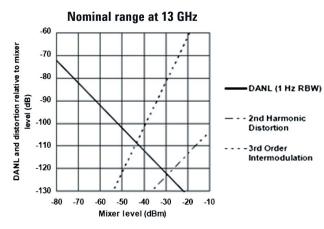
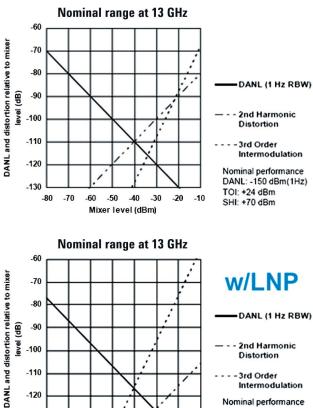



Figure 5. Nominal PSA DR plot at 13 GHz

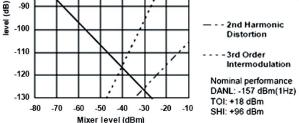
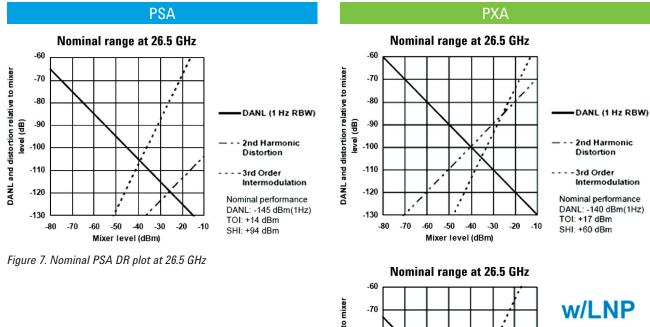



Figure 6.Nominal PXA DR plots at 13 GHz (with or without LNP)

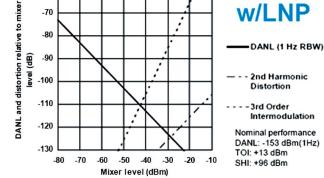


Figure 8. Nominal PXA DR plots at 26.5 GHz (with or without LNP)

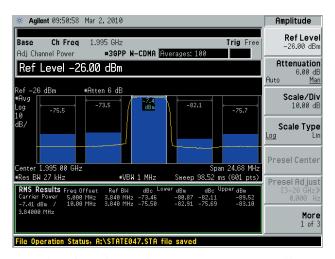


Figure 9. A PSA W-CDMA ACLR measurement showing –82 dBc dynamic range

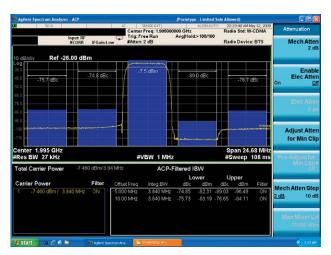


Figure 10. A PXA W-CDMA ACLR measurement showing –89 dBc dynamic range

	PSA			Pک	ΚA	
Displayed average	e noise level (E	ANL) (Input termir	nated, sample or avera	ige detector, avera	aging type = Log, 2	20 to 30 °C)
E4443A/E4445A/ E4440A (Preamp OFF)	Zero span and swept normalized to 1 Hz RBW and 0 dB attenuation	Zero span and swept normalized to 1 Hz RBW and 0 dB attenuation (typical)	N9030A Option 503, 508, 513, 526 (Preamp OFF)	Zero span and swept normalized to 1 Hz RBW and 0 dB attenuation (NFE ON) ^{1, 2}	Zero span and swept normalized to 1 Hz RBW and 0 dB attenuation (NFE OFF)	Zero span and swept normalized to 1 Hz RBW and 0 dB attenuation (NFE OFF Low Noise Path \geq 3.6 GHz) ^{3,4}
3 Hz to 1 kHz 1 kHz to 10 kHz	N/A N/A	–110 dBm nominal –130 dBm nominal	3 Hz to 9 kHz	–100 dBm typical	–100 dBm typical	
10 kHz to 100 kHz	–137 dBm	–141 dBm nominal	9 to 100 kHz	—146 dBm	–146 dBm	
100 kHz to 1 MHz 1 to 10 MHz 10 MHz to 1.2 GHz 1.2 to 2.1 GHz 2.1 to 3.0 GHz 3 to 6.6 GHz	–145 dBm –150 dBm –154 dBm –153 dBm –152 dBm –152 dBm	–149 dBm –153 dBm –155 dBm –154 dBm –153 dBm –153 dBm	100 kHz to 1 MHz 1 to 20 MHz 20 MHz to 1.2 GHz 1.2 to 2.1 GHz 2.1 to 3.0 GHz 3.0 to 3.6 GHz	150 dBm 155 dBm 165 dBm 163 dBm 162 dBm 161 dBm	150 dBm 155 dBm 155 dBm 153 dBm 152 dBm 151 dBm	
6.6 GHz to 13.2 GHz	–150 dBm	–152 dBm	3.5 to 4.2 GHz 4.2 to 8.4 GHz 8.3 to 13.6 GHz	–151 dBm –154 dBm –156 dBm	—147 dBm —150 dBm —149 dBm	–153 dBm –155 dBm –155 dBm
13.2 GHz to 20 GHz 20 GHz to 26.5 GHz	–147 dBm –143 dBm	–149 dBm –145 dBm	13.5 to 16.9 GHz 16.9 to 20 GHz 20 to 26.5 GHz	–154 dBm –149 dBm –143 dBm	—145 dBm —143 dBm —137 dBm	–152 dBm –151 dBm –150 dBm
Preamp ON (Option			Preamp ON (Option		107 4511	
100 kHz to 200 kHz 200 kHz to 500 kHz 500 kHz to 1 MHz 1 MHz to 10 MHz 10 MHz to 500 MHz 500 MHz to 1.1 GHz 1.1 GHz to 2.1 GHz	159 dBm 159 dBm 163 dBm 166 dBm 169 dBm 168 dBm 167 dBm	–162 dBm –162 dBm –165 dBm –168 dBm –170 dBm –169 dBm –168 dBm	100 to 200 kHz 200 to 500 kHz 500 kHz to 20 MHz 20 MHz to 2.1 GHz	–157 dBm –160 dBm –164 dBm –172 dBm	–157 dBm –160 dBm –164 dBm –165 dBm	N/A N/A N/A N/A
2.1 GHz to 3.0 GHz	–165 dBm	–166 dBm	2.1 to 3.6 GHz	-172 dBm	–163 dBm	N/A
Preamp ON (Option 10 to 50 MHz	–148 dBm	–154 dBm	Preamp ON (Option 100 to 200 kHz	–157 dBm	20) —157 dBm	
50 to 500 MHz 500 MHz to 2.1 GHz 2.1 to 3 GHz 3.0 to 6.6 GHz 6.6 to 13.2 GHz 13.2 to 16 GHz	–153 dBm –166 dBm –166 dBm –165 dBm –163 dBm –162 dBm	-164 dBm -168 dBm -168 dBm -166 dBm -165 dBm -165 dBm	200 to 500 kHz 500 kHz to 20 MHz 20 MHz to 2.1 GHz 2.1 to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 16.9 GHz	-160 dBm -164 dBm -172 dBm -172 dBm -172 dBm -170 dBm -166 dBm	-160 dBm -164 dBm -165 dBm -163 dBm -164 dBm -163 dBm -161 dBm	N/A N/A N/A
16 to 19 GHz 19 to 26.5 GHz	–162 dBm –159 dBm	–164 dBm –161 dBm	16.9 to 20.0 GHz 20.0 to 26.5 GHz	–162 dBm –162 dBm –162 dBm	–159 dBm –155 dBm	N/A N/A N/A

1. The DANL with the Noise Floor Extension (NFE) ON is calculated based on the normal DANL specs and NFE improvement (at 95th percentile). Refer to the PXA specificaiton guide for details.

2. NFE improvements are specified only above 20 MHz. Refer to the PXA specificaiton guide for details.

3. NFE is not very helpful in reducing the effective DANL in the low noise path.

4. The low noise path requires Option LNP to be installed and enabled (ON). The low noise path operates from 3.6 GHz to 26.5 GHz and cannot operate simultaneously with the preamplifier.

5. Options 1DS and 110 are mutually exclusive on PSA.

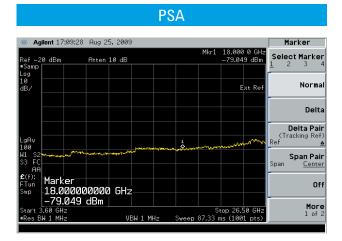


Figure 11. Nominal PSA noise floor in high band (1 MHz RBW)

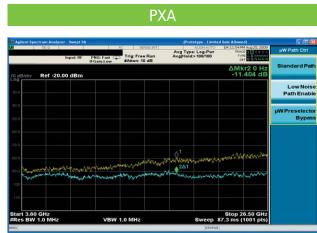


Figure 12. Nominal PXA noise floor in high band (1 MHz RBW), showing approximately 11 dB improvement of Opt LNP at 18 GHz

		PSA		РХА		
Stability						
Phase noise	Offset	Specification	Typical	Offset	Specification	Typical
(20 °C to 30 °C)	10 Hz			10 Hz		75 dBc/Hz (nominal)
(CF = 1 GHz)	100 Hz	−91 dBc/Hz	−96 dBc/Hz	100 Hz	−94 dBc/Hz	-100 dBc/Hz
	1 kHz	–103 dBc/Hz	—108 dBc/Hz	1 kHz	−121 dBc/Hz	−125 dBc/Hz
	10 kHz	−116 dBc/Hz	—118 dBc/Hz	10 kHz	−129 dBc/Hz	–132 dBc/Hz
	30 kHz	−116 dBc/Hz	—118 dBc/Hz	30 kHz	−130 dBc/Hz	–132 dBc/Hz
	100 kHz	−122 dBc/Hz	−124 dBc/Hz	100 kHz	−129 dBc/Hz	—131 dBc/Hz
	1 MHz	−145 dBc/Hz	−147 dBc/Hz	1 MHz	−145 dBc/Hz	—146 dBc/Hz
	6 MHz	−153 dBc/Hz	—155.5 dBc/Hz			
	10 MHz	−155 dBc/Hz	−156 dBc/Hz	10 MHz	−155 dBc/Hz	–158 dBc/Hz
Residual FM	< (1 Hz x N	√1) p-p in 1 s, typical	, see frequency range	\leq (0.25 Hz x N ¹) p-p in 20 ms, nominal, see frequency		
	for N (harn	nonic number)	. , .	range for N	I (harmonic number	·)

1. N value depends on the frequency band. See the frequency specifications table.

For nominal phase noise performance at different carrier frequencies, refer to Figures 15 and 16.

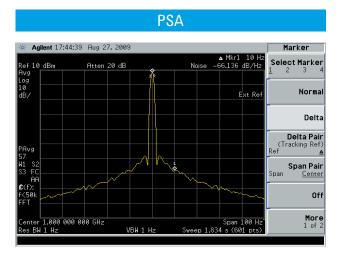


Figure 13. PSA screen shot demonstrating the phase noise performance of –66 dBc/Hz at 10 Hz offset for a 1 GHz carrier.

Figure 14. PXA screen shot demonstrating the phase noise performance of –92 dBc/Hz at 10 Hz offset for a 1 GHz carrier.

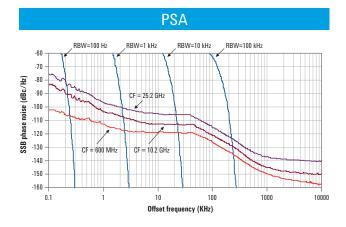


Figure 15. PSA nominal phase noise plot at different carrier frequencies and offsets.

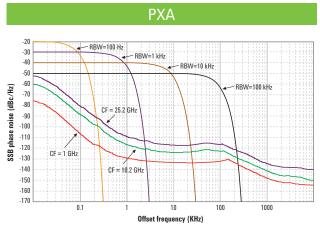


Figure 16. PXA nominal phase noise plot at different carrier frequencies and offsets.

		PSA	РХА		
Spurious response	(mixer level = -40 dBm)				
General spurious	100 Hz \leq f < 10 MHz from carrier f \geq 10 MHz from carrier	(-73 + 20 log N ¹) dBc (-80 + 20 log N ¹) dBc	100 Hz \leq f $<$ 10 MHz from carrier (LO-related) f \geq 10 MHz from carrier	(-73 + 20 log N ¹) dBc (-80 + 20 log N ¹) dBc	
Residual responses Input terminated and 0					
	200 kHz to 6.6 GHz 6.6 GHz to 26. 5 GHz	–100 dBm –100 dBm nominal	200 kHz to 8.4 GHz Other frequencies	–100 dBm –100 dBm nominal	

1. N value depends on the frequency band. See the frequency specifications table.

Simplified block diagrams showing wideband IF digital processing

While the PXA shares the same "All-digital-IF" concept with the PSA, it offers wider analysis bandwidth (up to 140 MHz) with superior IF frequency response and phase linearity, which minimize the instrument's inherent distortion resulting in the highest modulation analysis accuracy. A more advanced A/D converter and FPGA and larger data memory are employed in the PXA with higher clock frequency.

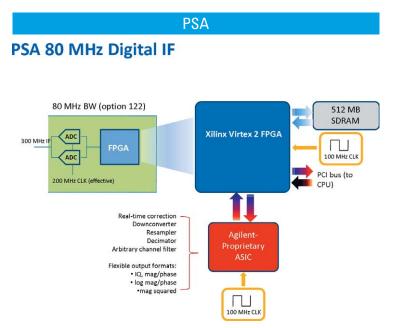


Figure 17. Simplified block diagram for PSA digital IF

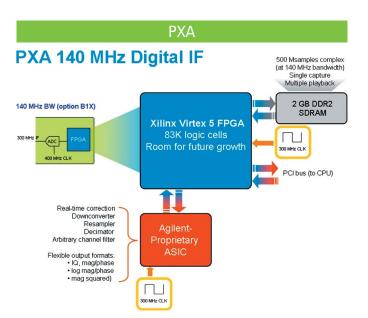


Figure 18. Simplified block diagram for PXA digital IF

Analysis banwidth specifications

	PSA	РХА
Analysis bandwidth	S ¹	
	Option B7J10 MHzOption 14040 MHzOption 12280 MHz	(standard) 10 MHz Option B25 25 MHz Option B40 40 MHz Option B1X 140 MHz
Wideband (40 MHz	z) IF frequency response ²	
	Option 140 Center frequency (GHz) ≤ 3.0 ± 0.65 dB $> 3.0, \leq 6.6$ ± 0.43 dB $> 6.6, \leq 26.5$ ± 0.96 dB	Option B40 Center frequency (GHz) $\geq 0.03, < 3.6$ ± 0.4 dB $\geq 3.6, < 8.4$ ± 0.4 dB $> 8.4, \leq 26.5$ ± 0.6 dB
Wideband (40 MHz	z) IF phase linearity ²	
	Option 140 Center frequency (GHz) RMS (nominal) > $0.3, \le 3.0$ 0.6° > $3.0, \le 26.5$ 0.3°	Option B40Center frequency (GHz)RMS (nominal) $\geq 0.02, < 3.6$ 0.012° $\geq 3.6, \leq 26.5$ 0.08°
Wideband (80 MHz	z) IF frequency response ³	
	$\begin{array}{l lllllllllllllllllllllllllllllllllll$	Option B1X Center frequency (GHz) $\geq 0.1, < 3.6 \pm 0.73 \text{ dB} \pm 0.15 \text{ dB}$ (typical) $\geq 3.6, \leq 8.4 \pm 0.73 \text{ dB} \pm 0.2 \text{ dB}$ (typical) $\geq 8.4, \leq 26.5 \pm 0.9 \text{ dB} \pm 0.4 \text{ dB}$ (typical)
Wideband (80 MHz	z) IF phase linearity ³	
	Option 122 Center frequency (GHz) RMS (nominal) > $0.3, \le 3.0$ 0.9° > $3.0, \le 26.5$ 0.4°	Option B1XCenter frequency (GHz)RMS (nominal) $\geq 0.03, < 3.6$ 0.004° $\geq 3.6, \leq 26.5$ 0.2°
Wideband (140 MH	Hz) IF frequency response ⁴	
	Option 122 Not applicable	Option B1X Center frequency (GHz) $\geq 0.1, < 3.6$ ± 0.25 dB (typical) $\geq 3.6, \leq 8.4$ ± 0.30 dB (typical) $\geq 8.4, \leq 26.5$ ± 0.75 dB (typical)
Wideband (140 Mł	Hz) IF phase linearity ⁴	
	Option 122 Not applicable	Option B1XCenter frequency (GHz)RMS (nominal) $\geq 0.03, < 3.6$ 0.004° $\geq 3.6, \leq 26.5$ 0.2°

1. Analysis bandwidth is the instantaneous bandwidth available around a center frequency over which the input signal can be digitized for further analysis or processing in the time, frequency, or modulation domain. Preselector bypassed for frequency above band 0. Span ≤ 140 MHz.

2. Preselector bypassed for frequency above band 0. Span ≤ 40 MHz.

3. Preselector bypassed for frequency above band 0. Span \leq 80 MHz.

4. Preselector bypassed for frequency above band 0. Span \leq 140 MHz.

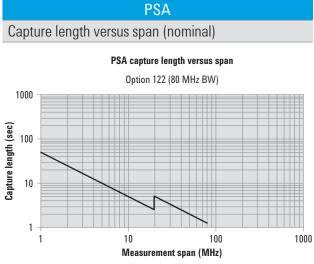


Figure 19. PSA WBIF capture versus span

Note: PSA requires the use of Agilent 89600 VSA software for maximum capture length shown above.

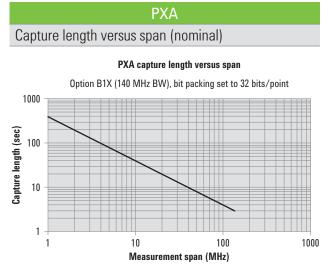


Figure 20. PXA WIBIF capture versus span

Note: PXA requires the use of Agilent 89600 VSA software for maximum capture length shown above.

General specifications

	PSA	РХА
Temperature range		
Operating	0 °C to +55 °C	5 °C to +50 °C
		0 °C to +55 °C ¹
Storage	-40 °C to +65 °C	-40 °C to +65 °C

	PSA	РХА
EMI, radiated immunity and environmental conditions		
Radiated and conducted emission is in compliance with CISPR Pub 11/1996 Class B.	Yes	Yes
Complies with the radiated electromagnetic field immunity requirements in IEC/EM 61326-1.	Yes	Yes
Samples of this product have been type tested in accordance with the Agilent Environmental Test manual and verified to be robust against the environmental stresses of storage, transportation and end-use. These stresses include but are not limited to temperature,		
humidity, shock, vibration, altitude and power line conditions.	Yes	Yes
Test methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3.	Yes	Yes

1. Option SSD, solid state hard drive, required for temperature operating range from 0 to 55 °C.

	PSA	РХА
Dimensions		
Dimensions (W x H x D)	426 x 177 x 483 mm 16.8 x 7.0 x 19 inch	426 x 177 x 556 mm 16.8 x 7.0 x 21.9 inch
Rack height	4-U in 19 inch chassis	4-U in 19 inch chassis
Weight		
Net	24 kg (50 lbs) nominal	23 kg (48 lbs) nominal
Shipping	33 kg (73 lbs) nominal	34 kg (75 lbs) nominal
Power requirement	ts	
Voltage and frequency	100/120 V, 50/60/400 Hz; 220/240 V, 50/60 Hz	100 to 120 V, 50/60/400 Hz; 220 to 240 V, 50/60 Hz
Power consumption	On < 260 W, no options < 450 W, all options Standby < 20 W	On < 450 W, fully loaded with options Standby 40 W
Data storage		
Internal	512 MB (nominal)	160 GB (Removable hard disk drive, standard; or removable solid-state drive, optional)
Floppy drive	10 to 40 °C 3.5" 1.44 MB	Option EFM USB storage device

Front panel

Figure 21. PSA front panel

Figure 23. PSA rear panel

Figure 24. PXA rear panel

IF output characteristics

	PSA	РХА
IF output character	istics ¹	
Center frequency	Standard mode 321.4 MHz Option 140 N/A (40 MHz analysis BW) Option 122 N/A (80 MHz analysis BW)	
Connector	SMA female 50 Ω nominal	SMA female 50 Ω nominal
Conversion gain Preselector bypassed	Low band+2 to +4 dB nominal3 Hz to 3.05 GHHigh band-6 to -8 dB nominal2.85 GHz to upper limitHigh band-9 to -17 dB nominal(Option 123)	Iz All bands —1 to +4 dB nominal plus RF frequency response
	required)	
Bandwidth	Low band 40 MHz or 60 MHz² Nominal High band 35 to 70 MHz Nominal	Low band Up to 140 MHz ³ Nominal High band 58 to 74 MHz ⁴ Nominal
Preselector bypassed	High band 240 MHz Nominal	High band Up to 700 MHz Nominal

1. While PSA has the IF output as standard, PXA requires Option CR3, second IF output, for this functionality.

2. 40 MHz standard, 60 MHz with Option 122 or 140 installed in instrument. When Option 122 or 140 is installed, the bandwidth of the output is approximately 95 MHz.

3. Bandwidths being symmetric around the IF output center frequencies are: 95 MHz standard or with Option B25, 40 MHz with Option B40, or 140 MHz with option B1X.

4. Due to the preselector passbands depending on frequencies.

	PSA	РХА
Other IF output cha	aracteristics ¹	
Center frequency	Option H70 70 MHz Special option	Option CRP 10 to 75 MHz User programmable @ 0.5 MHz steps
Connector	SMA female 50 Ω nominal	SMA female 50 Ω nominal
Conversion gain	All bands —8 to —4 dB nominal Nominal	All bands -1 to +4 dB nominal plus RF frequency response
Bandwidth Preselector bypassed	Low band 40 MHz Nominal High band 30 to 60 MHz Nominal	Low band 100 MHz nominal Output centered @ 70 MHz High band Depend on RF center frequency High band 100 MHz nominal Output centered @ 70 MHz
Center frequency	Option HYX 21.4 MHz Special option	Option CRP 10 to 75 MHz User programmable @ 0.5 MHz steps
Connector	BNC 50 Ω nominal	SMA female 50 Ω nominal
Conversion gain	Low band +6 to +9 dB nominal 3.05 to 6.6 GHz +4 to +7 dB nominal 6.6 to 13.2 GHz +5 to +8 dB nominal 13.2 to 19.2 GHz +7 to 10 dB nominal 19.2 to 26.5 GHz +8 to +11 dB nominal	All bands —1 to +4 dB nominal plus RF frequency response
Bandwidth	All bands 10 MHz nominal	Low band 100 MHz nominal Output centered @ 70 MHz
Preselector bypassed		High band Depend on RF center frequency High band 100 MHz nominal Output centered @
		70 MHz

1. PXA Option CRP provides user programmable IF output frequency ranging from 10 to 75 MHz for replacement of a variety of PSA special options for IF out such as H70, HYX, H20, and etc.

	PSA	РХА
Phase noise	E444xA Option 226	N9068A
Noise figure	E444xA Option 219	N9069A
Digital modulation analysis	E444xA Option 241	89601A
WLAN	E444xA Option 217 (Option 122 or 140 required)	89601A/89601X-B7R (Option B25 required)
W-CDMA	E444xA Option BAF	N9073A-1FP
HSDPA/HSUPA	E444xA Option 210 (Option BAF required)	N9073A-2FP (N9073A-1FP required)
GSM w/EDGE	E444xA Option 202	N9071A (future)
cdma2000	E444xA Option B78	(Contact Agilent)
1xEV-DV	E444xA Option 214	(Contact Agilent)
1xEV-D0	E444xA Option 204	(Contact Agilent)
cdmaOne	E444xA Option BAC	(Contact Agilent)
TD-SCDMA power	E444xA Option 211	(Future)
TD-SCDMA modulation	E444xA Option 212	(Future)
HSPA for TD-SCDMA	E444xA Option 213 (Option 212 required)	(Future)

Measurement personalities/application software

Note: The Agilent 89601A VSA software can be installed in the PXA and used for in-depth signal analysis in various formats of cellular communications.

PSA to PXA models/options cross reference

	PSA models/options	PXA options
E4443A E4445A E4440A E4446A E4447A E4448A	3 Hz to 6.7 GHz 3 Hz to 13.2 GHz 3 Hz to 26.5 GHz 3 Hz to 44 GHz 3 Hz to 42.98 GHz 3 Hz to 50 GHz	N9030A-5033 Hz to 3.6 GHzN9030A-5083 Hz to 8.4 GHzN9030A-5133 Hz to 13.6 GHzN9030A-5263 Hz to 26.5 GHzFutureContact AgilentFutureContact AgilentFutureContact AgilentFutureContact Agilent
Option 122 Option 140 Option 123 Option 235	80 MHz bandwidth digitizer 40 MHz bandwidth digitizer Switchable MW preselector bypass Wide bandwidth digitizer external calibration wizard for Option 122/140	Option B1XAnalysis bandwidth, 140 MHzOption B40Analysis bandwidth, 40 MHzOption MPBMicrowave preselector bypassN/A. The calibration process for wide bandwidth IF is included.
Option 1DS Option 110	RF internal preamplifier 100 kHz to 3 GHz RF/uW internal preamplifier 10 MHz to the maximum frequency of the PSA	Option P03Preamplifier, 3.6 GHzOption P08Preamplifier, 8.4 GHzOption P13Preamplifier, 13.6 GHzOption P26Preamplifier, 26.5 GHz
Option 111 Option 117 Option 124 Option B7J Option BAB	USB device-side I/O interface Secure memory erase Y-axis video output Digital demod hardware Replace type-N input connector with APC 3.5 mm connector	Standard. PXA ships standard with 1 type-B slave port, and 6type-A master ports.PXA ships standard with a removable hard drive for instrumentsanitizationOption YAVY-axis video outputOption EA3Electronic attenuatorFutureContact Agilent
Option AYZ Option UK6 Option A6J Option 1A7 Option 230	External mixing Commercial calibration certificate with test data ANSI Z540-compliant calibration from factory IS017025A-compliant calibration from factory BenchLink web remote control software	FutureContact AgilentOption UK6Commercial calibration certificate with test dataOption A6JANSI Z540-compliant calibration from factoryOption 1A7ISO17025A-compliant calibration from factoryN/A. PXA's Windows®-based OS offers the Web server enablingremote control to the PXA through the web.
Option HYX Option H70 Option HY7 Option H7L Option 266	21.4 MHz narrow bandwidth IF output 70 MHz IF output Improved gain 70 MHz IF output Auxiliary log video out Programming code compatibility suite	Option CRPConnector rear, Arbitrary IF outputOption CRPConnector rear, Arbitrary IF outputOption CRPConnector rear, Arbitrary IF outputOption ALVLog video outN9061ARemote language compatibility

Related Agilent Literature

Publication title	Pub number
Agilent PXA Signal Analyzer Brochure	5990-3951EN
Agilent N9030A PXA Signal Analyzer Configuration Guide	5990-3953EN
Agilent PXA Signal Analyzer N9030A Data Sheet	5990-3952EN
Agilent PSA Series High-Performance Spectrum Analyzers Brochure	5980-1283E
Agilent PSA Series Spectrum Analyzers Data Sheet	5980-1284E
PSA Series High-Performance Spectrum Analyzers Configuration Guide and PXA Cross Reference	5989-2773EN
Why Migrate from the PSA to the PXA? Technical Overview	5990-3990EN

www.agilent.com/find/PXA

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

LXI

www.lxistandard.org

LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

Agilent Channel Partners

www.agilent.com/find/channelpartners

Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

For more information, visit Agilent's website:

www.agilent.com/find/PSA www.agilent.com/find/PXA

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment through-out its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements. For information regarding self maintenance of this product, please contact your Agilent office.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance, onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to:

www.agilent.com/find/removealldoubt

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada	(877) 894-4414
Latin America	305 269 7500
United States	(800) 829-4444
Asia Pacific	
Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Thailand	1 800 226 008

Europe & Middle East

Austria	43 (0) 1 360 277 1571	
Belgium	32 (0) 2 404 93 40	
Denmark	45 70 13 15 15	
Finland	358 (0) 10 855 2100	
France	0825 010 700*	
	*0.125 €/minute	
Germany	49 (0) 7031 464 6333	
Ireland	1890 924 204	
Israel	972-3-9288-504/544	
Italy	39 02 92 60 8484	
Netherlands	31 (0) 20 547 2111	
Spain	34 (91) 631 3300	
Sweden	0200-88 22 55	
Switzerland	0800 80 53 53	
United Kingdom	44 (0) 118 9276201	
Other European Countries:		
www.agilent.com/find/contactus		
Revised: October 1, 2009		

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2010 Printed in USA, March 12, 2010 5990-5362EN

Agilent Technologies

Windows is a U.S. registered trademark of Microsoft Corporation.